Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2021

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions were amplified by local anisotropic electron distributions, and their large-scale amplitudes were modulated by the plasma density. A novel observation of this event is that chorus waves at frequencies above QP emissions exhibit a strong correlation with QP emissions. Those chorus waves intensified when the QP emissions reach their peak frequency. This indicates that embryonic QP emissions may be critical for its own intensification as well as chorus waves under certain circumstances. The low-earth-orbit POES satellite observed enhanced energetic electron precipitation in conjunction with the Van Allen Probes, providing direct evidence that QP emissions precipitate energetic electrons into the atmosphere. This scenario is quantitatively confirmed by our quasilinear diffusion simulation results.

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

2020

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the position of the satellites we estimated the spatial extent of the area where the one-to-one correspondence is observed. We found this to be up to 1.21 Earth s radii by 2.26 hr MLT, in radial and longitudinal directions, respectively. Using simple ray tracing calculations, we discuss the probable source location of these waves. At ∼12:20 UT, changes in the frequency sweep rate of the QP elements are observed at all locations associated with magnetic disturbances. We also discuss temporal changes of the spectral shape of QP observed simultaneously in space and on the ground, suggesting the changes are related to properties of the source mechanisms of the waves. This could be linked to two separate sources or a larger source region with different source intensities (i.e., electron flux). At frequencies below the low hybrid resonance, waves can experience attenuation and/or reflection in the magnetosphere. This could explain the sudden end of the observations at the spacecraft, which are moving away from the area where waves can propagate.

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitudes of the South Atlantic Anomaly. Further, while the events observed by Van Allen Probes are smoothly distributed over seasons with only mild maxima in spring/autumn, DEMETER occurrence rate has a single pronounced minimum in July. The apparent inconsistency is explained by considering a nondipolar Earth s magnetic field and significant background wave intensities which in these cases prevent the quasiperiodic events from being identified in DEMETER data.

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitudes of the South Atlantic Anomaly. Further, while the events observed by Van Allen Probes are smoothly distributed over seasons with only mild maxima in spring/autumn, DEMETER occurrence rate has a single pronounced minimum in July. The apparent inconsistency is explained by considering a nondipolar Earth s magnetic field and significant background wave intensities which in these cases prevent the quasiperiodic events from being identified in DEMETER data.

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

2016

Conjugate observations of quasiperiodic emissions by the Cluster, Van Allen Probes, and THEMIS spacecraft

We present results of a detailed analysis of two electromagnetic wave events observed in the inner magnetosphere at frequencies of a few kilohertz, which exhibit a quasiperiodic (QP) time modulation of the wave intensity. The events were observed by the Cluster and Van Allen Probes spacecraft and in one event also by the THEMIS E spacecraft. The spacecraft were significantly separated in magnetic local time, demonstrating a huge azimuthal extent of the events. Geomagnetic conditions at the times of the observations were very quiet, and the events occurred inside the plasmasphere. The modulation period observed by the Van Allen Probes and THEMIS E spacecraft (duskside) was in both events about twice larger than the modulation period observed by the Cluster spacecraft (dawnside). Moreover, individual QP elements occur about 15 s earlier on THEMIS E than on Van Allen Probes, which might be related to a finite propagation speed of a modulating ULF wave.

emec, F.; Hospodarsky, G.; Pickett, J.; ik, O.; Kurth, W.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2016

YEAR: 2016     DOI: 10.1002/2016JA022774

QP emissions; quasiperiodic emissions; Van Allen Probes

2015

Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations

We report on simultaneous spacecraft and ground-based observations of quasiperiodic VLF emissions and related energetic-electron dynamics. Quasiperiodic emissions in the frequency range 2\textendash6 kHz were observed during a substorm on 25 January 2013 by Van Allen Probe-A and a ground-based station in the Northern Finland. The spacecraft detected the VLF signals near the geomagnetic equator in the night sector at L = 3.0\textendash4.2 when it was inside the plasmasphere. During the satellite motion toward higher latitudes, the time interval between quasiperiodic elements decreased from 6 min to 3 min. We find one-to-one correspondence between the quasiperiodic elements detected by Van Allen Probe-A and on the ground, which indicates the temporal nature of the observed variation in the time interval between quasiperiodic elements. Multiсomponent measurements of the wave electric and magnetic fields by the Van Allen Probe-A show that the quasiperiodic emissions were almost circularly right-hand polarized whistler mode waves and had predominantly small (below 30\textdegree) wave vector angles with respect to the magnetic field. In the probable source region of these signals (L about 4), we observed synchronous variations of electron distribution function at energies of 10\textendash20 keV and the quasiperiodic elements. In the pause between the quasiperiodic elements pitch angle distribution of these electrons had a maximum near 90\textdegree, while they become more isotropic during the development of quasiperiodic elements. The parallel energies of the electrons for which the data suggest direct evidence of the wave-particle interactions is in a reasonable agreement with the estimated cyclotron resonance energy for the observed waves.

Titova, E.; Kozelov, B.; Demekhov, A.; Manninen, J.; Santolik, O.; Kletzing, C.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 08/2015

YEAR: 2015     DOI: 10.1002/grl.v42.1510.1002/2015GL064911

energetic electrons; quasiperiodic emissions; Van Allen Probes; VLF waves



  1